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Abstract
Thenth root of a Lie algebra and its dual (that is the fractional supergroup) based
on the permutation group Sn invariant forms is formulated in the Hopf algebra
formalism. Detailed discussion of S3-graded sl(2) algebras is performed.

PACS numbers: 02.20.-a, 02.30.-f

1. Introduction

To arrive at a superalgebra one adds new elements Qα to generators Xj of the corresponding
Lie algebra and defines the relations

{Qα,Qβ} = b
j

αβXj . (1)

Observing that the anticommutator in the above relation is invariant under the cyclic Z2 or
permutation S2 groups we can look for possible generalization of the supersymmetry by using
Sn or Zn invariant structures instead of the anticommutator. For example, if n = 3 instead
of (1) one has the cubic relation

QαQβQγ + QγQαQβ + QβQγQα = b
j

αβγXj (2)

which is Z3 invariant and the cubic relation

Qα{Qβ,Qγ } + Qβ{Qα,Qγ } + Qγ {Qα,Qβ} = b
j

αβγXj (3)

which is S3 invariant. From the above relations only (3) appears to be consistent at the co-
algebra level. Sometimes we will use the term fractional superalgebras for Sn-graded algebras
with n = 3, 4, . . . with fractional supergroups being their dual.

Fractional superalgebras based on Sn invariant forms were first introduced in [1, 2]. In
this paper we put this construction in the Hopf algebra context and define their dual, that
is fractional supergroups. There are many reasons for doing that. In the formulation of
superalgebras one can use either geometric (see e.g. [3]) or algebraic [4] approaches (see
also [5] for comparison). As for fractional superalgebras, the geometric approach seems to
be insufficient. This situation is similar to the theory of quantum algebras, where we have to
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work with universal enveloping algebras rather than with Lie algebras [6]. Moreover, having a
fractional superalgebra in hand we can define fractional supergroups by taking the dual of the
former. Having, at last, put fractional superalgebras in the Hopf algebra context we can use
the well-developed representation theory of the latter in the construction of representations of
fractional superalgebras.

There are other approaches to fractional supersymmetry in the literature [7–12]. For
example, one can arrive at fractional supergroups by using quantum groups at the roots of
unity [13].

The plan of the paper is as follows. To make the treatment reasonably self-consistent, in
section 2 we give a formulation of superalgebras and groups in the Hopf algebra formalism. In
section 3 we define fractional superalgebras and discuss the structure of their dual (fractional
supergroups). Section 4 is devoted to the detailed discussion of the S3-graded sl(2) algebras.

2. Preliminaries on superalgebras

Let U(g) be the universal enveloping algebra of a Lie algebra g generated by Xj , j =
1, . . . , dim(g) with

[Xi,Xj ] =
dim(g)∑
k=1

ckijXk (4)

where ckij are the structure constants of the Lie algebra g. The Hopf algebra structure of U(g)
is given by the co-multiplication � : U(g) → U(g) ⊗ U(g), co-unit ε : U(g) → C and
antipode S : U(g) → U(g):

�(Xj) = Xj ⊗ 1 + 1 ⊗ Xj ε(Xj ) = 0 S(Xj ) = −Xj . (5)

We can extend the Hopf algebra U(g) by adding elements Qα , α = 1, . . . , N and K with
relations

{Qα,Qβ} =
dim(g)∑
j=1

b
j

αβXj (6)

[Qα,Xj ] =
N∑
β=1

a
j

αβQβ (7)

KQα = −QαK K2 = 1 (8)

where b
j

αβ and a
j

αβ are the structure coefficients satisfying the superJacobi identities. This
algebra which we denote by UN

2 (g) can also be equipped with a Hopf algebra structure by
defining

�(Qα) = Qα ⊗ 1 + K ⊗ Qα �(K) = K ⊗ K (9)

ε(Qj ) = 0 ε(K) = 1 S(Qj) = QjK S(K) = K. (10)

The dual of UN
2 (g) is the Hopf algebra AN

2 (G) = C∞(G) × �N
2 , where C∞(G) is the

algebra of infinite differentiable functions on a Lie group G and �N
2 is the algebra over the

field of complex numbers generated by θα , j = 1, . . . , N and λ with relations

{θα, θβ} = 0 {λ, θα} = 0 λ2 = 1. (11)

The operations �, ε and S in AN(G) depend on the value of the structure constants ckij , bjαβ
and a

j

αβ .
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For example, if = CN then the formulae

�(θα) = θα ⊗ 1 + λ ⊗ θα �(λ) = λ ⊗ λ

�(zα) = zα ⊗ 1 + 1 ⊗ zα + λθα ⊗ θα
(12)

ε(θα) = 0 ε(λ) = 1 ε(zα) = 0 (13)

S(θα) = −λθα S(λ) = λ S(zα) = −zα (14)

define the super-N -dimensional translation group. The corresponding superalgebra is defined
by

{Qβ,Qα} = δβαPα [Xβ,Xα] = 0 [Qβ,Xα] = 0. (15)

3. Fractional superalgebras and supergroups

To arrive at cubic root of a lie algebra g we have to replace the S2 invariant form in (6) by the
S3 invariant one. Consequently, we define an algebra generated by Xj , j = 1, . . . , dim(g)

and Qα , K , α = 1, . . . , N satisfying the relations (4) and

{Qα,Qβ,Qγ } = b
j

αβγXj (16)

[Qα,Xj ] = a
j

αβQβ (17)

and

KQα = qQαK q3 = 1 K3 = 1 (18)

where

{Qα,Qβ,Qγ } ≡ Qα{Qβ,Qγ } + Qβ{Qα,Qγ } + Qγ {Qα,Qβ} (19)

is the S3 invariant form. We denote this algebra by the symbol UN
3 (g) with the lower index

indicating the degree of grading. One can check that the above algebra is compatible with the
co-algebra structure and antipode given by the formulae

�(Qα) = Qα ⊗ 1 + K ⊗ Qα �(K) = K ⊗ K (20)

ε(Qj ) = 0 ε(K) = 1 S(Qj) = −K2Qj S(K) = K2. (21)

For example, let us verify the consistence of the comultiplication � and (16). Since � is a
homomorphism we have

�(QαQβQγ ) = QαQβQγ ⊗ 1 + 1 ⊗ QαQβQγ + QαQβK ⊗ Qγ

+QαKQγ ⊗ Qβ + KQβQγ ⊗ Qα + QαK
2 ⊗ QβQγ

+KQβK ⊗ QαQγ + K2Qγ ⊗ QαQβ. (22)

Using (18) we get∑
(αβγ )∈S3

(QαQβK ⊗ Qγ + QαKQγ ⊗ Qβ + KQβQγ ⊗ Qα) = 0 (23)

and ∑
(αβγ )∈S3

(QαK
2 ⊗ QβQγ + KQβK ⊗ QαQγ + K2Qγ ⊗ QαQβ) = 0. (24)

Thus we have shown that∑
(αβγ )∈S3

�(QαQβQγ ) =
∑

(αβγ )∈S3

(QαQβQγ ⊗ 1 + 1 ⊗ QαQβQγ ) (25)

which together with the comultiplication rule (5) for the generators Xj implies the consistence
of the comultiplication (20) and the relation (16).
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To define structure constants b
j

αβγ and a
j

αβ we have to derive identities involving the
commutator and S3 invariant form. One can check that the relations

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (26)

[A, {B,C,D}] + {[B,A], C,D} + {B, [C,A],D} + {B,C, [D,A]} = 0 (27)

and

[A, {B,C,D}] + [B, {A,C,D}] + [C, {B,A,D}] + [D, {B,C,A}] = 0 (28)

are satisfied identically. For example, we verify the identity (27). Let B = A1, C = A2 and
D = A3. Then

[A, {A1, A2, A3}] =
∑
ijk∈S3

([A,Ai]AjAk + AiAj [A,Ak] + Ai[A,Aj ]Ak). (29)

Combining terms (123), (132) from the first sum in the right-hand side of the above
equality, (231), (321) from the second sum and (213), (312) from the third sum we get
{[A,A1], A2, A3}. In a similar fashion we obtain {[A,A2], A1, A3} and {[A,A3], A2, A1}.
Thus

[A, {A1, A2, A3}] = {[A,A1], A2, A3} + {[A,A2], A1, A3} + {[A,A3], A2, A1} (30)

which is the identity (27).
The one given by (26) is the usual Jacobi identity. Inserting

A = Xi B = Xj C = Qα (31)

into (26) and using (17) and (4) we get
N∑
σ=1

(aiασ a
j

σβ − ajασ a
i
σβ) =

dim(g)∑
k=1

ckij a
k
αβ. (32)

Comparing the above relation with (4) we conclude that the N ×N matrices aj ≡ (a
j

αβ)
N
α,β=1

define a N -dimensional representation of a given Lie algebra. There are different possibilities
in the choice of this representation. For example, if g = sl(2) and N = 2 we can either
use the scalar representation a

j

αβ = 0 or the spinor one in which a
j

αβ are the Pauli matrices.
Consequently, for fixed Lie algebra g and N we can define different superfractional algebras.
To be more precise one has to add an additional index in the notation UN

3 (g) which reflects
the transformation law of supergenerators Qα with respect to a given Lie algebra g. However,
for the sake of simplicity we will not do this. Detailed discussion of this nonuniqueness is
performed in the next section where we consider fractional superalgebras sl(2).

Let us now consider restrictions on structure coefficients coming from the other identities.
Inserting

A = Xk B = Qα C = Qβ D = Qγ (33)

into the identity (27) and

A = Qσ B = Qα C = Qβ D = Qγ (34)

into (28) and using (16), (17) we arrive at the relations
N∑
σ=1

(akασ b
i
σβγ + akβσ b

i
σαγ + akγσ b

i
σβα) =

dim g∑
j=1

cijkb
j

αβγ (35)

and
dim g∑
k=1

(bkαβγ a
k
στ + bkσαβa

k
γ τ + bkγσαa

k
βτ + bkβγσ a

k
ατ ) = 0. (36)
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Now we define fractional supergroups. Let x = {xnm} be the matrix representing a Lie
group G and A(G) be the algebra of polynomials on G. It is known that A(G) is the Hopf
algebra which is in nondegenerate duality with the universal enveloping algebra U(g) [14].
In general the number of group elements xnm is more than the number of generators Xj in
the corresponding Lie algebra g. This is due to the fact that there may be some restrictions
on the matrix representing a Lie group. For example, if G = SL(2) we have a two by two
matrix with determinant equal to 1. The number of independent group parameters is equal to
the number of generators of sl(2). Explicitly one can define these parameters by using some
decomposition (Gauss, Cartan, Iwasawa and so on). In a similar way for an arbitrary matrix
Lie group we can resolve restrictions imposed on the elements xnm and obtain independent
group parameters xj with duality relations

〈xi, Xj 〉 = δij (37)

where Xj are the generators of the corresponding Lie algebra. However, in general A(G)
in terms of these new parameters will not be the polynomial algebra. It appears that in the
Hopf algebra formalism it is more convenient to work with elements xnm. Instead of solving
restrictions imposed on these element one defines new generators Xnm with some restrictions.
For example, if g = sl(2) we define four generators with the restriction X11 + X22 = 0.

To construct the dual algebra to a fractional superalgebra UN
3 (g) we have to introduce

new parameters θα , α = 1, . . . , N and λ corresponding to the fractional supergenerators Qα

and K . The duality relations are given by the following formulae:

〈θα,Qβ〉 = δαβ 〈λ,K〉 = q 〈xnm,K〉 = δnm (38)

with all other linear relations being zero. Recall the property of the duality relations [14]

〈ab, φ〉 =
∑
j

〈a, φj 〉〈b, φ′
j 〉 (39)

with

�(φ) =
∑
j

φjφ
′
j . (40)

Here φ and a, b are elements of a Hopf algebra and its dual. Inserting in (39) a = θα , b = λ

and φ = Qα and using (20), (38) we get

λθα = qθαλ. (41)

Taking a = xnm, b = λ and φ = Xnm we conclude that elements xnm commute with λ. The
choice a = λ2, b = λ and φ = K implies 〈λ3,K〉 = 1. Since λ3 cannot be proportional to the
diagonal elements xnn (〈λ3, Xnn〉 = 0) we have

λ3 = 1. (42)

The above condition can be shown to imply the comultiplication

�(λ) = λ ⊗ λ. (43)

To make (41) and (43) compatible we have to define

�(θα) =
N∑
β=1

θβ ⊗ dβα + λ ⊗ θβ + · · · (44)

where d = {dαβ} is an N -dimensional representation of a Lie group G under consideration
and · · · denote the combination of terms consisting of 4, 7, 10 and so on θα generators.
Using (44), (38) and (39) after some algebra we get

{θα, θβ, θγ } = 0. (45)
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In a similar way the commutativity of xnm with λ and (43) implies

�(xnm) =
∑
k

xnk ⊗ xkm + · · · (46)

where · · · denotes the combination of terms consisting of 3, 6, 9 and so on θα generators.
Using (46) and (39) we conclude that elements xnm commute with θα .

Let us denote the algebra generated by θα , α = 1, . . . , N and λ satisfying (41), (42)
and (45) by �N

3 and the direct product algebra A(G) × �N
3 by AN

3 (G). This algebra is in
nondegenerate duality with a Hopf algebra UN

3 (g). We call AN
3 (G) the fractional supergroup.

Using the properties

ε(a) = 〈a, 1〉 (47)

and

〈S(a), φ〉 = 〈a, S(φ)〉 (48)

of the duality relations we get the counite operation

ε(xnm) = δnm ε(θα) = 0 ε(λ) = 1 (49)

and the antipode

S(λ) = λ2. (50)

Using the properties of duality relations and axioms of a Hopf algebra one can derive unknown
terms in (44) and (46) and antipodes S(xnm), S(θα). These calculations depends on structure
constants cijk , a

j

αβ and bjαβγ . We demonstrate this construction on the explicit examples which
will be given later.

Before closing this section we define Sn-graded Lie algebras and groups. This can be
done in the same way as the S3 case. For this one has to use the Sn invariant form

{Qα1 ,Qα2 , . . . ,Qαn} =
∑

α1,α2,...,αn∈Sn
Qα1Qα2 · · ·Qαn (51)

where summation runs over all permutations of Sn. Instead of (16) and (18) we then have

{Qα1 ,Qα2 , . . . ,Qαn} = bjα1α2,...,αn
Xj (52)

and

KQα = qQαK qn = 1 Kn = 1 (53)

such that
N∑
σ=1

∑
(α1,...,αn)∈Zn

akα1σ
biσ2...αn

=
dim g∑
j=1

cijkb
j
α1α2...αn

(54)

and
dim(g)∑
k=1

∑
(α1,...,αn+1)∈Zn+1

bkα1...αn
akαn+1τ

= 0. (55)

The multiplication and counite in UN
n (g) are similar to that in UN

2 (g) or UN
3 (g) while the

antipode is given by

S(Qα) = −Kn−1Qα S(K) = Kn−1. (56)

The fractional supergroup is the algebra AN
n (G) = A(G) × �N

n where �N
n is the algebra

generated by θα , α = 1, . . . , N , λ with relations

{θα1 , θα2 , . . . , θαn} = 0 αk ∈ 1, 2, . . . , N (57)
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and

λθα = qθαλ λn = 1. (58)

The co-algebra operations and the antipode in AN
n (G) depend on the structure constants ckij ,

a
j

αβ and b
j
α1α2,...,αn . As an example let us consider the fractional superalgebra

Qn = P [X,Q] = 0. (59)

Since we have only one superelement Q the Sn invariant form is equal up to the multiple to
Qn. The corresponding fractional group is generated by θ , z and λ such that

θn = 0 λn = 1 λθ = qnθλ qn = 1 (60)

with z being commutative with θ and λ. The duality relations are

〈Q, θ〉 = 1 〈X, z〉 = 1 〈K, λ〉 = q. (61)

Using properties of duality relations we arrive at the following coalgebra structure:

�(θ) = θ ⊗ 1 + λ ⊗ θ (62)

�(z) = z ⊗ 1 + 1 ⊗ z +
n−1∑
k=1

λn−kθk ⊗ θn−k

(q : q)k(q : q)n−k

(63)

ε(θ) = 0 ε(λ) = 1 (64)

and

S(θ) = −λn−1θ S(λ) = λn−1 (65)

where

(q; q)k =
k∏

j=1

(1 − qj ). (66)

4. S3 graded superalgebras sl(2)

From the commutation relations

[X1, X2] = X3 [X3, X1] = 2X1 [X3, X2] = −2X2 (67)

for the algebra sl(2) we read

c3
12 = 1 c1

31 = 2 c2
32 = −2. (68)

For given N the matrix aj = {ajαβ} due to (32) is an arbitrary N -dimensional representation of

sl(2). The solution of (35) and (36) for bjαβγ is fully determined by this representation. Since

b
j

αβγ is symmetric in α, β and γ through (16) the number of unknown coefficients for the sl(2)
case is N(N + 1)(N + 2)/2. On the other hand, equation (35) which is symmetric in α, β, γ
gives 3N(N + 1)(N + 2)/2 equations and equation (36) which is symmetric in α, β, γ, σ

gives N2(N + 1)(N + 2)(N + 3)/24 equations. Although the system seems overdetermined
there are solutions of which some will be given below. We consider N = 1, 2 and 3 fractional
supergeneralizations of sl(2) at n = 3, that is q = ei π3 .
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4.1. N = 1 fractional super-sl(2)

We have one supergenerator Q1 which can transform as a scalar only. Therefore a
j

11 = 0.
Inserting it in the relations (35) and (36) we get bj111 = 0. These structure constants imply that
the fractional superalgebra U 1

3 (sl(2)) is the direct product of the universal enveloping algebra
U(sl(2)) and the Hopf algebra generated by Q1 and K satisfying the relations

KQ1 = qQ1K Q3
1 = 0 K3 = 1 (69)

and the co-algebra operations (20) and (21). The fractional supergroup A3
1(SL(2)) is the

direct product of the Hopf algebras A(SL(2)) and �1
3. Recall that the Hopf algebra structure

of polynomial algebra A(SL(2)) is given by

�(xnm) =
2∑

k=1

xnk ⊗ xkm (70)

and

S(x11) = x22 S(x22) = x11 S(x12) = −x12 S(x21) = −x21 (71)

where two by two matrix x = {xnm} representing SL(2) has determinant 1. The Hopf algebra
structure of the algebra �1

3 is given by the following formulae:

�(θ1) = θ1 ⊗ 1 + λ ⊗ θ1 �(λ) = λ ⊗ λ (72)

S(θ1) = −λ2θ1 S(λ) = λ2. (73)

4.2. N = 2 fractional super-sl(2)

For N = 2 we have two possibilities. We can either require generators Q1, Q2 to transform
as scalars or as spinors.

(i) In the former case we have ajα,β = 0. From the relations (35) and (36) we get bjαβγ = 0.
The obtained structure constants imply that the fractional superalgebra U 2

3 (sl(2)) is the direct
product of the universal enveloping algebra U(sl(2)) and the Hopf algebra generated by Q1,
Q2 and K satisfying the relations

KQα = qQαK {Qα,Qβ,Qγ } = 0 K3 = 1 (74)

and the co-algebra operations (20) and (21). The fractional supergroupA3
2(SL(2)) is the direct

product of the Hopf algebras A(SL(2)) and �2
3. The Hopf algebra structure of �2

3 is given by
the following formulae:

�(θα) = θα ⊗ 1 + λ ⊗ θα �(λ) = λ ⊗ λ (75)

S(θα) = −λ2θα S(λ) = λ2. (76)

(ii) Let us now assume that Q1 and Q2 transforms as spinors under the action of sl(2).
We have

a1 =
(

0 1
0 0

)
a2 =

(
0 0
1 0

)
a3 =

(
1 0
0 −1

)
. (77)

Equation (36) gives ten equations for 12 unknowns:

b1
111 = b1

112 = b2
122 = b2

222 = b3
111 = b3

222 = 0 (78)

b1
122 = − 1

3b
2
111 = b3

112 b1
222 = −3b2

112 = 3b3
122. (79)

Substituting these into (35) one finds that the only solution is bjαβγ = 0. Thus we obtained the
following fractional superalgebra:

{Qα,Qβ,Qγ } = 0 (80)

[Q1, X1] = Q2 [Q2, X2] = Q1 [Q1, X3] = Q1 [Q2, X3] = −Q2. (81)
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Using the general construction given in the previous section one can define the fractional
supergroup A1

3(SL(2)) corresponding to the above fractional superalgebra. A1
3(SL(2)) is

the algebra generated by elements xnm, θn, n,m = 1, 2 and λ satisfying (57), (58) and
det(xnm) = 1. The co-algebra operations and antipode can be shown to be given by (70), (71)
and

�(θ1) = θ2 ⊗ x21 + θ1 ⊗ x11 + λ ⊗ θ1 (82)

�(θ2) = θ2 ⊗ x22 + θ1 ⊗ x12 + λ ⊗ θ2 (83)

and

S(λ) = λ2 S(θ1) = λ2(x21θ2 − x22θ1) S(θ2) = λ2(x12θ1 − x11θ2). (84)

The duality relations are given by the formulae

〈X3, xnn〉 = (−)n+1 〈X1, x12〉 = 1 〈K, xnm〉 = δnm (85)

〈X2, x21〉 = 1 〈Qα, θβ〉 = δαβ 〈K, λ〉 = q. (86)

4.3. N = 3 fractional super-sl(2)

We have three different superalgebras depending on the choice of aj .
(i) Take ajαβ = 0. The relations (35) and (36) imply b

j

αβγ=0. This case is similar with (i)
of 4.2.

(ii) Take the vector representation

a1 =
( 0 0 0√

2 0 0
0

√
2 0

)
a2 =

( 0
√

2 0
0 0

√
2

0 0 0

)
a3 =

(−2 0 0
0 0 0
0 0 2

)
. (87)

The substitution of

a1
21 = a1

32 = a2
12 = a2

23 =
√

2 a3
11 = −2 a3

33 = 2 (88)

into (36) gives

b1
111 = 3

√
2b3

112 = −3b2
113

b1
112 =

√
2b3

122 = −2b2
123

b1
122 =

√
2

3
b3

222 = −b2
223

b1
113 = 2

√
2b3

123 = −b2
133

b1
133 =

√
2b3

233 = − 1
3b

2
333

b1
123 =

√
2

2
b3

223 = −1

2
b2

233

(89)

and the remaining 12 parameters bjαβγ are zero. The substitution of (89) into (35) gives

b1
113 = −2b1

122 = −b2
133 = 2b2

223 = 2
√

2b3
123 = −2

√
2

3
b3

222 (90)

and all other bjαβγ are zero. Hence we have a unique extension for the vector representation

of sl(2). Equations satisfied by b
j

αβγ , namely (35) and (36), are invariant under rescaling

b
j

αβγ → kb
j

αβγ where k is any nonzero constant. The choice of this nonzero constant results
only in a rescaling of the generators Qα . Just for the sake of simplicity we choose Q3

2 = X3,
i.e. b3

222 = 6. Then the fractional supersymmetric extension of sl(2) reads

[Q1, X2] =
√

2Q2 [Q1, X3] = −2Q1 [Q2, X1] =
√

2Q1 (91)

[Q2, X2] =
√

2Q3 [Q3, X1] =
√

2Q2 [Q3, X3] = 2Q3 (92)
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and

{Q1,Q1,Q3} = −4
√

2X1 {Q1,Q2,Q2} = 2
√

2X1 {Q1,Q2,Q3} = −2X3 (93)

{Q1,Q3,Q3} = −4
√

2X2 {Q2,Q2,Q2} = 6X3 {Q2,Q2,Q3} = −2
√

2X2. (94)

Note also that all bjαβγ = 0 is always a solution of (35) and (36).
(iii) Assume that two of the fractional supergeneratorsQ1,Q2 andQ3 transform as spinors

and the remaining one transforms as a scalar, that is

a1 =
( 0 1 0

0 0 0
0 0 0

)
a2 =

( 0 0 0
1 0 0
0 0 0

)
a3 =

( 1 0 0
0 −1 0
0 0 0

)
. (95)

The conditions (35) and (36) imply

b1
223 = −b2

111 = 2b3
123 (96)

with all other structure coefficients bjαβγ being zero. Choosing b1
223 = 1 we get the fractional

superalgebra given by (81) and

{Q1,Q1,Q3} = −X2 {Q2,Q2,Q3} = X1 {Q1,Q2,Q3} = 1
2X3 (97)

with all other relations being zero.
Before closing this section we discuss realization of fractional superalgebras by

‘differential operators’ in some linear spaces. Recall that for realization of superalgebras
one uses superderivatives which act on superspaces. Let F(M) be an algebra of functions on
a manifold M . For fixed grading n and the number N of ‘grassmannian’ variables a fractional
superspace is defined to be the direct product algebra F(M) × �N

n . We define fractional
derivatives Dθα by the formulae

Dθαθβ = δαβ Dθα (ab) = Dθα (a)b + k(a)Dθα (b) (98)

where a, b ∈ �N
n and

k(θα) = qθα k(ab) = k(a)k(b). (99)

Note that Dθα (f ) = 0 and k(f ) = f if f ∈ F(M). One can verify that these derivatives
satisfy the relations∑

α1...αn∈Sn
Dθα1

· · ·Dθαn
= 0. (100)

Using the fractional derivatives and superspaces defined above one can construct a realization
of a fractional superalgebras. For example, the formulae

X1 = −z2 d

dz
− zL X2 = d

dz
X3 = 2z

d

dz
+ L (101)

Q1 = Dθ Q2 = −zDθ Q3 = q

2
θ2 d

dz
K = qL (102)

where q = ei 2π
3 and

L = −q(2θ2D2
θ + Dθθ

2Dθ) (103)

define representation of the fractional algebra (iii) in the linear space A(C)×�1
3, where A(C)

is the algebra of polynomials of the complex variable z. Indeed, using

Lθk = kθk (104)

and

θ2D2
θ + D2

θ θ
2 + Dθθ

2Dθ = −q2 (105)

one can easily verify the relations (67), (81) and (97).
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